If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.905x^2+90x+150=0
a = -4.905; b = 90; c = +150;
Δ = b2-4ac
Δ = 902-4·(-4.905)·150
Δ = 11043
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11043}=\sqrt{9*1227}=\sqrt{9}*\sqrt{1227}=3\sqrt{1227}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-3\sqrt{1227}}{2*-4.905}=\frac{-90-3\sqrt{1227}}{-9.81} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+3\sqrt{1227}}{2*-4.905}=\frac{-90+3\sqrt{1227}}{-9.81} $
| X2-5=1+x3/2 | | 8/3+5y=10y-1/3 | | z-9z=4z-6-7 | | a-6a-9=-31 | | 56/8=u | | -120=8(x-7) | | 1-(x-5)/3=(x+2)/5-(6x-1)/15 | | 4x-9x+7=x-9+16 | | -37=6w-1 | | -5(3y-9)-y=-2(y-5) | | 3d+2=9+d | | 8=5-3w | | 25+13x=(7-11x)3 | | 4k-10=50 | | 486=12-6x | | 9=4w+5w | | 6x-3x+9=1x-4+13 | | -15=y/4-3 | | 7=-5+2y | | 2x^2+64x-480=0 | | c+5=3c-3 | | x-15=15Y | | 4=x-2=7 | | 3w=2=23 | | 3(7r-2)=21r | | 8+v/5=-7 | | 7x-28=7x | | 2(2u+)9=50 | | 50-7b=29 | | 8(x+1)=-2(8x+4) | | -3x-159+11x=49 | | 32=v/2+16 |